Long-term changes in the inorganic nitrogen output fluxes in European ICP Integrated Monitoring catchments – an assessment of the role of internal N-related parameters

Data mapping

<u>Jussi Vuorenmaa</u>, Sirpa Kleemola, Martin Forsius + representatives of focal points...

Joint ICP Waters & ICP IM Task Force meeting,

8.5.2018

The latest trend assessements at IM sites

Ecological Indicators 76 (2017) 15–29

ECOLOCIONS Internet Ecolociones Internet Ecolociones Internet Ecolociones Internet I

Long-term sulphate and inorganic nitrogen mass balance budgets in European ICP Integrated Monitoring catchments (1990–2012)

Jussi Vuorenmaa^{a,*}, Algirdas Augustaitis^b, Burkhard Beudert^c, Nicholas Clarke^d, Heleen A.de Wit^e, Thomas Dirnböck^f, Jane Frey^g, Martin Forsius^a, Iveta Indriksone^h, Sirpa Kleemola^a, Johannes Kobler^f, Pavel Krámⁱ, Antti-Jussi Lindroos^j, Lars Lundin^k, Tuija Ruoho-Airola¹, Liisa Ukonmaanaho^j, Milan Váňa^m


Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Check for updates

Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions

Jussi Vuorenmaa ^{a,*}, Algirdas Augustaitis ^b, Burkhard Beudert ^c, Witold Bochenek ^d, Nicholas Clarke ^e, Heleen A. de Wit ^f, Thomas Dirnböck ^g, Jane Frey ^h, Hannele Hakola ⁱ, Sirpa Kleemola ^a, Johannes Kobler ^g, Pavel Krám ^j, Antti-Jussi Lindroos ^k, Lars Lundin ¹, Stefan Löfgren ¹, Aldo Marchetto ^m, Tomasz Pecka ⁿ, Hubert Schulte-Bisping ^o, Krzysztof Skotak ⁿ, Anatoly Srybny ^p, Józef Szpikowski ^q, Liisa Ukonmaanaho ^k, Milan Váňa ^r, Staffan Åkerblom ¹, Martin Forsius ^a

The results from the ICP IM network show the positive effects of the S emission reduction measures in Europe

 $rac{1}{2}$ Concentrations and deposition fluxes of xSO₄ (wet + dry) have decreased significantly almost at all (> 95%) studied IM sites

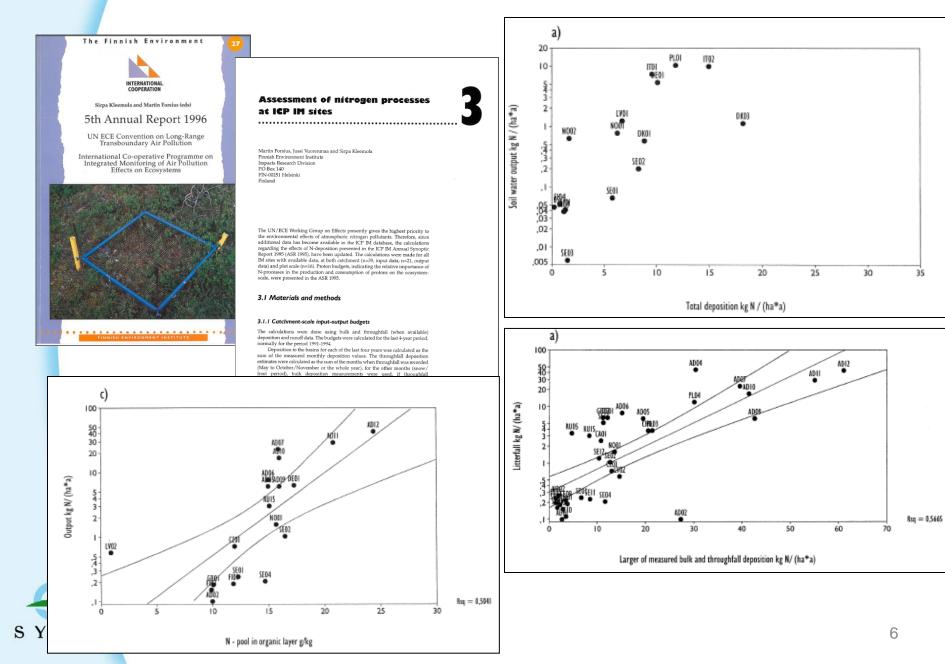
 $rac{1}{2}$ xSO₄ concentrations and fluxes in runoff have consequently decreased (significant at 90% and 60% of the sites, respectively), and the IM catchments have increasingly responded to the decreases in deposition of xSO₄ during the last 25 years

The most acid-sensitive IM catchments are experiencing a recovery from SO_4 -driven acidification, although net release of SO_4 from soil may delay the recovery

The results from the ICP IM network document the positive effects also for the N emission reduction measures in Europe

Bulk deposition of NO₃ and NH₄ decreased significantly at 60–80% (concentrations) and 40–60% (fluxes) of the sites Concentrations and fluxes of NO₃ in runoff decreased at 73% and 63% of the sites, respectively, and NO_3 concentrations decreased significantly at 50% of the sites In general, TIN ($NO_3 + NH_4$) was strongly retained (> 90%) in the catchments not affected by natural disturbances. As yet there are no widespread signs of a consistent increase in NO₃ concentrations or exports in sensitive undisturbed freshwater

The N cycling is complex


- □ The present decreasing trend of TIN deposition at IM sites should generally lead to decreased NO₃ concentrations in runoff !?
- Routine monitoring variables do not explain variation/change in TIN output satisfactorily, because obviously not all potential drivers were included in the empirical models

Further analysis with specific catchment and soil data is needed: Data mapping on internal catchment N-related parameters at IM sites

No detailed research plan yet, but main questions will be: What is the present status of these N-related parameters? How these parameters explain the variation/trends of TIN at IM sites?

Previous N-assessment

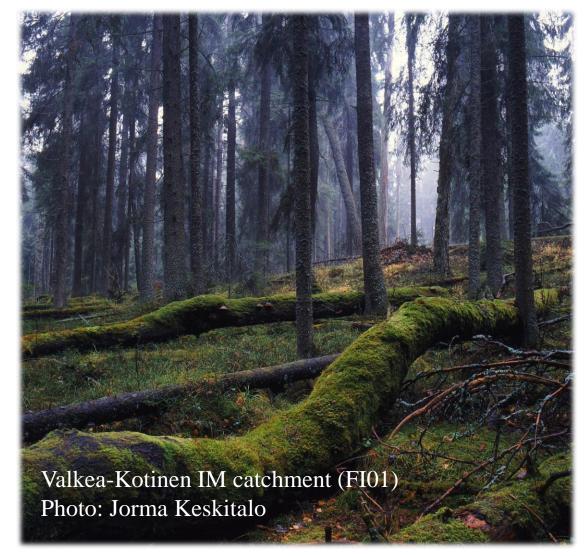
Submitted/existing data 2000-2016

Site	Country	Hydrometeorology			Deposition		Runoff	Litterfall	Foliage	Soil		Soil water
		Prec.	Runoff	Air temp.	Bulk	Throughfall	Conc./flux			(chemistry)	(physics)	
		PC	RW	AM	BD	TF	RW	LF	FC	SC	SC	SW
AT01	Austria	х	х	х	х	х	х	х	х	х	х	х
BY02	Belarus	х	х	х	х	n.d.	х				x	
CH02	Switzerland	х	х		х	n.d.	х					
CZ01	Czech R.	х	х	х	х	х	х				x	х
CZ02	"	х	х	х	х	х	х	х				х
DE01	Germany	х	х	х	х	х	х	х	х	х	x	х
DE02	"	х	n.d.	х	х	x	n.d.	х	х	х	x	х
EE01	Estonia	х	n.d.	х	х	x	n.d.	х	х	х	х	х
EE02	"	х	х	х	х	x	х	х	х	х	х	х
ES02	Spain	х	х	х	х	х	х	х	х	х	х	х
FI01	Finland	х	х	х	х	х	х			х	х	х
F103	"	х	х	х	х	х	х			х	х	x
F106	"	х	х	х	х	х	х					x
IE01	Ireland	х			х	x						x
IT01	Italy	х	х	х	х	x	х	х	х	х	x	x
IT03	"	х	n.d.		х	x	х		х			х
IT07	"	х	n.d.		х	x	n.d.		х	х	x	
IT09	"	х	n.d.		х	x	х		х	х	x	х
LT01	Lithuania	х	х	х	х	x	х	х	х	х		х
LT03	"	х	х	х	х	х	х	х	х	х		х
LV01	Latvia	х	х		х	х	х	х	х			х
LV02	"	х	х		х	х	х	х	х			х
NO01	Norway	х	х	х	х	х	х				х	х
NO02	"	х	х		х	x	х					х
NO03	"	х	х		х	n.d.	х					х
PL01	Poland	х		х	х	х				х	х	х
PL06	"	х	х		х	х	х	х	х			x
PL10	"	х	х		х	х	х	х	х			x
SE04	Sweden	х	х	х	х	х	х	х	х		х	х
SE14	"	х	х	х	х	х	х	х	х		х	х
SE15	"	х	х	х	х	х	х	х	х		х	х
SE16	"	х	х	х	х	х	х	х	х		х	х
										N tot	Soil temp.	NO3, NH4, N t
N=32	N=15									pН	Bulk density	рН
										тос	-	DOC
										C:N		Flow

7

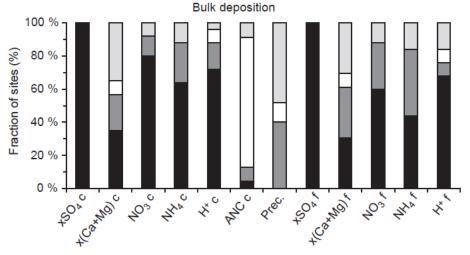
SYKE

Empirical data needed

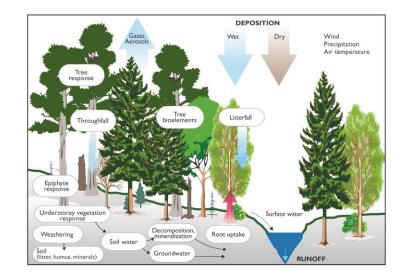

If TF agrees & willingness to share national data

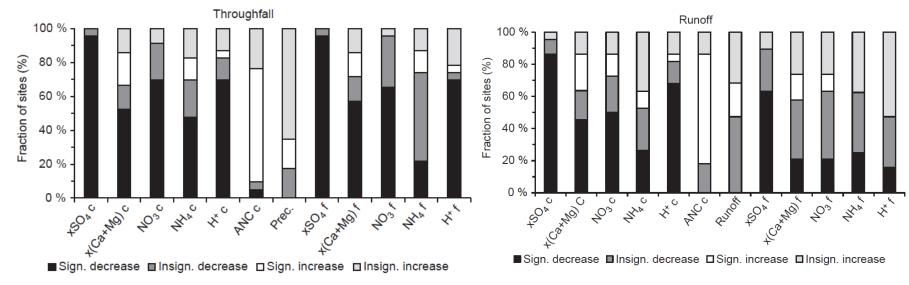
- □ Soil chemistry (SC): N tot, TOC, C/N, pH
- □ Soil water chemistry (SW): NO₃, NH₄, N tot, TOC/DOC, pH, flow
- Litterfall chemistry (LF): N tot, TOC, litterfall amount (d.w.)
- □ Foliage chemistry (FC): N tot, TOC, sample weight (d.w.)
- □ Other parameters? Soil moisture and temperature, stand age...

Time schedule and work plan


- Data submitted by 30.9.2018
- □ Draft Material and Methods by 31.10.2018
- □ Manuscript submission by 31.12.2019

Thank you





Percentage of IM sites with a significant decreasing (black), insignificant decreasing (dark grey), significant increasing (white) and insignificant increasing (light grey) trend in concentrations and fluxes in 1990–2015

Sign. decrease Insign. decrease Sign. increase Insign. increase

